Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Biosens Bioelectron ; 223: 115037, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2165110

RESUMO

The current coronavirus disease 2019 (COVID-19) pandemic is caused by several variants of severe acute respiratory syndrome coronavirus-2 virus (SARS-CoV-2). With the roll-out of vaccines and development of new therapeutics that may be targeted to distinct viral molecules, there is a need to screen populations for viral antigen-specific SARS-CoV-2 antibodies. Here, we report a rapid, multiplexed, electrochemical (EC) device with on-chip control that enables detection of SARS-CoV-2 antibodies in less than 10 min using 1.5 µL of a patient sample. The EC biosensor demonstrated 100% sensitivity and specificity, and an area under the receiver operating characteristic curve of 1, when evaluated using 93 clinical samples, including plasma and dried blood spot samples from 54 SARS-CoV-2 positive and 39 negative patients. This EC biosensor platform enables simple, cost-effective, sensitive, and rapid detection of anti-SARS-CoV-2 antibodies in complex clinical samples, which is convenient for evaluating humoral-responses to vaccination or infection in population-wide testing, including applications in point-of-care settings. We also demonstrate the feasibility of using dried blood spot samples that can be collected locally and transported to distant clinical laboratories at ambient temperature for detection of anti-SARS-CoV-2 antibodies which may be utilized for serological surveillance and demonstrate the utility of remote sampling.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Anticorpos Antivirais , Teste para COVID-19 , Sensibilidade e Especificidade
2.
Nat Biomed Eng ; 6(8): 968-978, 2022 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1984391

RESUMO

Rapid, accurate and frequent detection of the RNA of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and of serological host antibodies to the virus would facilitate the determination of the immune status of individuals who have Coronavirus disease 2019 (COVID-19), were previously infected by the virus, or were vaccinated against the disease. Here we describe the development and application of a 3D-printed lab-on-a-chip that concurrently detects, via multiplexed electrochemical outputs and within 2 h, SARS-CoV-2 RNA in saliva as well as anti-SARS-CoV-2 immunoglobulins in saliva spiked with blood plasma. The device automatedly extracts, concentrates and amplifies SARS-CoV-2 RNA from unprocessed saliva, and integrates the Cas12a-based enzymatic detection of SARS-CoV-2 RNA via isothermal nucleic acid amplification with a sandwich-based enzyme-linked immunosorbent assay on electrodes functionalized with the Spike S1, nucleocapsid and receptor-binding-domain antigens of SARS-CoV-2. Inexpensive microfluidic electrochemical sensors for performing multiplexed diagnostics at the point of care may facilitate the widespread monitoring of COVID-19 infection and immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Dispositivos Lab-On-A-Chip , Plasma , RNA Viral , Saliva , Glicoproteína da Espícula de Coronavírus
3.
Front Microbiol ; 13: 910156, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1928435

RESUMO

During the first few months of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, the medical research community had to expeditiously develop, select, and deploy novel diagnostic methods and tools to address the numerous testing challenges presented by the novel virus. Integrating a systematic approach to diagnostic selection with a rapid validation protocol in a clinical setting can shorten the timeline to bring new technologies to practice. In response to the urgent need to provide tools for identifying SARS-CoV-2-positive individuals, we developed a framework for assessing technologies against a set of prioritized performance metrics to guide device selection. We also developed and proposed clinical validation frameworks for the rapid screening of new technologies. The rubric described here represents a versatile approach that can be extended to future technology assessments and can be implemented in preparation for future emerging pathogens.

4.
Sens Actuators B Chem ; 365: 131906, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1796107

RESUMO

As viruses constantly change due to mutation, variants are expected to emerge demanding development of sensors capable of detecting multiple variants using one single sensor platform. Herein, we report the integration of a synthetic binder against SARS-CoV-2 with a nanoplasmonic-based sensing technology, which enables the successful detection of spike proteins of Alpha, Beta and Gamma variants of SARS CoV-2. The recognition event is achieved by specific nanostructured molecularly imprinted polymers (nanoMIPs), developed against a region of the receptor binding domain (RBD) of the SARS CoV-2 spike protein. The transduction is based on the principle of localized surface plasmon resonance (LSPR) associated with silver nanostructures. The nanoMIPs-functionalised LSPR sensor allows for the detection of all 3 protein variants with a limit of detection of 9.71 fM, 7.32 fM and 8.81 pM using wavelength shifts respectively for Alpha, Beta and Gamma spike protein variants. This can be achieved within 30 min from the sample collection, both from blood and using nasal swab, thus making this sensor suitable for rapid detection of COVID-19. Additionally, the turnaround time for sensor development and validation can be completed in less than 8 weeks, making it suitable for addressing future pandemic needs without the requirement for biological binding agents, which is one of the bottlenecks to the supply chain in diagnostic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA